Balancina Act

Atoms are not ______ or ____ during a chemical reaction. Scientists know that there must be the _____ number of atoms on each ____ of the _____. To balance the chemical equation, you must add _____ in front of the chemical formulas in the equation. You cannot _____ or ____ subscripts!

- 1) Determine number of atoms for each element.
- 2) Pick an element that is not equal on both sides of the equation.
- 3) Add a coefficient in front of the formula with that element and adjust your counts.
- 4) Continue adding coefficients to get the same number of atoms of each element on each side.

$O_2 \rightarrow$ MgO

$$Mg = Mg =$$

Try these:

$$\Box$$
 Ca + \Box O₂ \Rightarrow \Box CaO

$$Ca = Ca =$$

$$| N_2 + | H_2 \rightarrow | NH_3$$

$$N_2 + M_2 + M_3$$

$$Cu_2O + CO_2$$

$$Cu = Cu =$$

$$C = C =$$

$$H_2O_2 \rightarrow H_2O + O_2$$

Balancing Act Practice

Name _____

Balance each equation. Be sure to show your lists! Remember you cannot add subscripts or place coefficients in the middle of a chemical formula.

1. Na + MgF₂
$$\rightarrow$$
 NaF + Mg

2.
$$Mg + HCl \rightarrow MgCl_2 + H_2$$

3.
$$Cl_2 + KI \rightarrow KCl + I_2$$

4. NaCl
$$\rightarrow$$
 Na + Cl₂

5. Na +
$$O_2 \rightarrow Na_2O$$

6. Na + HCl
$$\rightarrow$$
 H₂ + NaCl

7.
$$K + Cl_2 \rightarrow KCl$$

Challenge: This one is tough!

$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

O =

Atoms are not **CREATED** or **DESTROYED** during a chemical reaction. Scientists know that there must be the **SAME** number of atoms on each **SIDE** of the **EQUATION**. To balance the chemical equation, you must add **COEFFICIENTS** in front of the chemical formulas in the equation. You cannot **ADD** or **CHANGE** subscripts!

O =

Step 1: Determine number of atoms for each element.

 $Mg + \bigcup_{Q_2} O_2 \Rightarrow \bigcup_{Q_2} MgQQ$ Mg = Mg = Mg =

Step 2: Pick an element that is not equal on both sides of the equation.

Step 3: Add a coefficient in front of the formula with that element and adjust your counts.

Step 4: Continue adding coefficients to get the same number of atoms of each element on each side.

Try these:

\Box Ca + \Box O ₂	→ CaO
Ca =	Ca =
O =	O =
$N_2 + H_2$	→
N =	N =
H =	H =
Cu =	Cu =
O =	O =
C =	C =
H ₂ O ₂ →	$H_2O + O_2$
H =	H =
O =	O =

Step-by-Step Example Problem:

Step 1: Determine number of atoms for each element.

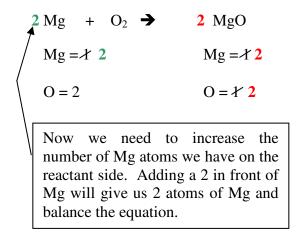
Balancing Act Teacher Notes

$$Mg + O_2 \rightarrow MgO$$

$$Mg = 1$$
 $Mg = 1$


$$O = 2$$
 $O = 1$

Step 2: Pick an element that is not equal on both sides of the equation.


$$Mg + O_2 \rightarrow MgO$$
 $Mg = 1$
 $O = 2$
 MgO

Since the O atoms are not equal, we'll target those first!

Step 3: Add a coefficient in front of the formula with that element and adjust your counts.

Step 4: Continue adding coefficients to get the same number of atoms of each element on each side.

Balancing Act Answer Key:

Page 1 Problems

$$2 \text{ Ca} + \text{ O}_2 \rightarrow 2 \text{ CaO}$$

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

$$2 Cu_2O + C \rightarrow 4 Cu + CO_2$$

 $2 H_2 O_2 \rightarrow 2 H_2 O + O_2$ Hint: Add the O atoms on the product side together when doing the counts.

Page 2 Practice Problems

1.
$$2 \text{ Na} + \text{MgF}_2 \rightarrow 2 \text{ NaF} + \text{Mg}$$

2.
$$Mg + 2 HCl \rightarrow MgCl_2 + H_2$$

3.
$$Cl_2 + 2 KI \rightarrow 2 KCl + I_2$$

4.
$$2 \text{ NaCl} \rightarrow 2 \text{ Na} + \text{Cl}_2$$

5.
$$4 \text{ Na} + \text{O}_2 \rightarrow 2 \text{ Na}_2\text{O}$$

6.
$$2 \text{ Na} + 2 \text{ HCl} \rightarrow \text{H}_2 + 2 \text{ NaCl}$$

7.
$$2 K + Cl_2 \rightarrow 2 KCl$$

Challenge: This one is tough!

$$2 C_2 H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2 O$$